Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar.

Identifieur interne : 003457 ( Main/Exploration ); précédent : 003456; suivant : 003458

The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar.

Auteurs : Jaclyn J. Stewart [Canada] ; Takuya Akiyama ; Clint Chapple ; John Ralph ; Shawn D. Mansfield

Source :

RBID : pubmed:19386808

Descripteurs français

English descriptors

Abstract

Poplar (Populus tremula x alba) lignins with exceedingly high syringyl monomer levels are produced by overexpression of the ferulate 5-hydroxylase (F5H) gene driven by a cinnamate 4-hydroxylase (C4H) promoter. Compositional data derived from both standard degradative methods and NMR analyses of the entire lignin component (as well as isolated lignin fraction) indicated that the C4HF5H transgenic's lignin was comprised of as much as 97.5% syringyl units (derived from sinapyl alcohol), the remainder being guaiacyl units (derived from coniferyl alcohol); the syringyl level in the wild-type control was 68%. The resultant transgenic lignins are more linear and display a lower degree of polymerization. Although the crucial beta-ether content is similar, the distribution of other interunit linkages in the lignin polymer is markedly different, with higher resinol (beta-beta) and spirodienone (beta-1) contents, but with virtually no phenylcoumarans (beta-5, which can only be formed from guaiacyl units). p-Hydroxybenzoates, acylating the gamma-positions of lignin side chains, were reduced by >50%, suggesting consequent impacts on related pathways. A model depicting the putative structure of the transgenic lignin resulting from the overexpression of F5H is presented. The altered structural features in the transgenic lignin polymer, as revealed here, support the contention that there are significant opportunities to improve biomass utilization by exploiting the malleability of plant lignification processes.

DOI: 10.1104/pp.109.137059
PubMed: 19386808
PubMed Central: PMC2689994


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar.</title>
<author>
<name sortKey="Stewart, Jaclyn J" sort="Stewart, Jaclyn J" uniqKey="Stewart J" first="Jaclyn J" last="Stewart">Jaclyn J. Stewart</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, Canada V6T 1Z4.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de la Colombie-Britannique</orgName>
</affiliation>
</author>
<author>
<name sortKey="Akiyama, Takuya" sort="Akiyama, Takuya" uniqKey="Akiyama T" first="Takuya" last="Akiyama">Takuya Akiyama</name>
</author>
<author>
<name sortKey="Chapple, Clint" sort="Chapple, Clint" uniqKey="Chapple C" first="Clint" last="Chapple">Clint Chapple</name>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19386808</idno>
<idno type="pmid">19386808</idno>
<idno type="doi">10.1104/pp.109.137059</idno>
<idno type="pmc">PMC2689994</idno>
<idno type="wicri:Area/Main/Corpus">003588</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003588</idno>
<idno type="wicri:Area/Main/Curation">003588</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003588</idno>
<idno type="wicri:Area/Main/Exploration">003588</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar.</title>
<author>
<name sortKey="Stewart, Jaclyn J" sort="Stewart, Jaclyn J" uniqKey="Stewart J" first="Jaclyn J" last="Stewart">Jaclyn J. Stewart</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, Canada V6T 1Z4.</nlm:affiliation>
<country>Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver</wicri:regionArea>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique</region>
</placeName>
<orgName type="university">Université de la Colombie-Britannique</orgName>
</affiliation>
</author>
<author>
<name sortKey="Akiyama, Takuya" sort="Akiyama, Takuya" uniqKey="Akiyama T" first="Takuya" last="Akiyama">Takuya Akiyama</name>
</author>
<author>
<name sortKey="Chapple, Clint" sort="Chapple, Clint" uniqKey="Chapple C" first="Clint" last="Chapple">Clint Chapple</name>
</author>
<author>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (MeSH)</term>
<term>Cytochrome P-450 Enzyme System (metabolism)</term>
<term>Hybridization, Genetic (MeSH)</term>
<term>Lignin (chemistry)</term>
<term>Lignin (isolation & purification)</term>
<term>Magnetic Resonance Spectroscopy (MeSH)</term>
<term>Models, Molecular (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétylation (MeSH)</term>
<term>Cytochrome P-450 enzyme system (métabolisme)</term>
<term>Hybridation génétique (MeSH)</term>
<term>Lignine (composition chimique)</term>
<term>Lignine (isolement et purification)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Modèles moléculaires (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Spectroscopie par résonance magnétique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cytochrome P-450 Enzyme System</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cytochrome P-450 enzyme system</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Acetylation</term>
<term>Hybridization, Genetic</term>
<term>Magnetic Resonance Spectroscopy</term>
<term>Models, Molecular</term>
<term>Molecular Weight</term>
<term>Plants, Genetically Modified</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Acétylation</term>
<term>Hybridation génétique</term>
<term>Masse moléculaire</term>
<term>Modèles moléculaires</term>
<term>Spectroscopie par résonance magnétique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Poplar (Populus tremula x alba) lignins with exceedingly high syringyl monomer levels are produced by overexpression of the ferulate 5-hydroxylase (F5H) gene driven by a cinnamate 4-hydroxylase (C4H) promoter. Compositional data derived from both standard degradative methods and NMR analyses of the entire lignin component (as well as isolated lignin fraction) indicated that the C4HF5H transgenic's lignin was comprised of as much as 97.5% syringyl units (derived from sinapyl alcohol), the remainder being guaiacyl units (derived from coniferyl alcohol); the syringyl level in the wild-type control was 68%. The resultant transgenic lignins are more linear and display a lower degree of polymerization. Although the crucial beta-ether content is similar, the distribution of other interunit linkages in the lignin polymer is markedly different, with higher resinol (beta-beta) and spirodienone (beta-1) contents, but with virtually no phenylcoumarans (beta-5, which can only be formed from guaiacyl units). p-Hydroxybenzoates, acylating the gamma-positions of lignin side chains, were reduced by >50%, suggesting consequent impacts on related pathways. A model depicting the putative structure of the transgenic lignin resulting from the overexpression of F5H is presented. The altered structural features in the transgenic lignin polymer, as revealed here, support the contention that there are significant opportunities to improve biomass utilization by exploiting the malleability of plant lignification processes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19386808</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>08</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>150</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar.</ArticleTitle>
<Pagination>
<MedlinePgn>621-35</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.109.137059</ELocationID>
<Abstract>
<AbstractText>Poplar (Populus tremula x alba) lignins with exceedingly high syringyl monomer levels are produced by overexpression of the ferulate 5-hydroxylase (F5H) gene driven by a cinnamate 4-hydroxylase (C4H) promoter. Compositional data derived from both standard degradative methods and NMR analyses of the entire lignin component (as well as isolated lignin fraction) indicated that the C4HF5H transgenic's lignin was comprised of as much as 97.5% syringyl units (derived from sinapyl alcohol), the remainder being guaiacyl units (derived from coniferyl alcohol); the syringyl level in the wild-type control was 68%. The resultant transgenic lignins are more linear and display a lower degree of polymerization. Although the crucial beta-ether content is similar, the distribution of other interunit linkages in the lignin polymer is markedly different, with higher resinol (beta-beta) and spirodienone (beta-1) contents, but with virtually no phenylcoumarans (beta-5, which can only be formed from guaiacyl units). p-Hydroxybenzoates, acylating the gamma-positions of lignin side chains, were reduced by >50%, suggesting consequent impacts on related pathways. A model depicting the putative structure of the transgenic lignin resulting from the overexpression of F5H is presented. The altered structural features in the transgenic lignin polymer, as revealed here, support the contention that there are significant opportunities to improve biomass utilization by exploiting the malleability of plant lignification processes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Stewart</LastName>
<ForeName>Jaclyn J</ForeName>
<Initials>JJ</Initials>
<AffiliationInfo>
<Affiliation>Department of Wood Science, University of British Columbia, Vancouver, Canada V6T 1Z4.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Akiyama</LastName>
<ForeName>Takuya</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chapple</LastName>
<ForeName>Clint</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ralph</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 RR002301</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR002781</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>S10 RR008438</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR02301</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>04</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9035-51-2</RegistryNumber>
<NameOfSubstance UI="D003577">Cytochrome P-450 Enzyme System</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003577" MajorTopicYN="N">Cytochrome P-450 Enzyme System</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006824" MajorTopicYN="Y">Hybridization, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009682" MajorTopicYN="N">Magnetic Resonance Spectroscopy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008958" MajorTopicYN="N">Models, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19386808</ArticleId>
<ArticleId IdType="pii">pp.109.137059</ArticleId>
<ArticleId IdType="doi">10.1104/pp.109.137059</ArticleId>
<ArticleId IdType="pmc">PMC2689994</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Agric Food Chem. 2003 Oct 8;51(21):6178-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14518941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Commun (Camb). 2002 Jan 7;(1):90-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12120325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2001 Jan;49(1):86-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11302112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):10045-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10468559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2006 Oct 18;54(21):8352-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Oct 26;96(22):12328-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10535921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Nov;136(3):3537-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15516504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8955-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jan;53(2):368-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18184422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1363-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jul;57(6):993-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11423146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 1999 May;47(5):1988-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10552483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Apr;30(1):33-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1999 Apr;2(2):145-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10322194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Nov 24;275(47):36899-909</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10934215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Nov;228(6):919-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18654797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(3):223-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2003;38(4):305-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14551235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Mar 31;281(13):8843-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16421107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2007 Jul;25(7):759-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17572667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Mar 3;275(9):6537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6619-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9618461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Aug;35(4):535-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12904215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4939-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12668766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Biomol Chem. 2004 Oct 21;2(20):2888-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15480449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Jan;62(1):53-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12475619</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Colombie-Britannique</li>
</region>
<settlement>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Akiyama, Takuya" sort="Akiyama, Takuya" uniqKey="Akiyama T" first="Takuya" last="Akiyama">Takuya Akiyama</name>
<name sortKey="Chapple, Clint" sort="Chapple, Clint" uniqKey="Chapple C" first="Clint" last="Chapple">Clint Chapple</name>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<name sortKey="Ralph, John" sort="Ralph, John" uniqKey="Ralph J" first="John" last="Ralph">John Ralph</name>
</noCountry>
<country name="Canada">
<region name="Colombie-Britannique">
<name sortKey="Stewart, Jaclyn J" sort="Stewart, Jaclyn J" uniqKey="Stewart J" first="Jaclyn J" last="Stewart">Jaclyn J. Stewart</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003457 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003457 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19386808
   |texte=   The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19386808" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020